Sumber:
https://www.youtube.com/watch?v=r5Xc3BBbNJI
Artikel :
Fitur utama dalam model panel dinamis karena alpha-i (Time constant unobserved unit) secara konstruksi berkorelasi dengan variabel "lag y-it", sehingga menentukan 'y-it' (Variabel dependen) --> akan bias jika menggunakan estimasi least-squares
Jenis regresor (x-it)
1. Strictly exogenous, x-it tidak berkorelasi dengan u-it, tidak ada feedback dari periode sebelumnya
2. Weakly exogenous (predetermined), perubahan u-it periode sebelumnya berkorelasi dengan x-it, tidak ada feedback pada periode yang sama
3. Endogenous, x-it berkorelasi langsung dengan u-it, feedback pada periode yang sama
Question:
Can we take log of any index (i.e. HHI index, CR4 index or Lerner index)?
Answers:
If w1 is strictly exogenous, w2 is predetermined but not strictly exogenous,
and w3 is endogenous, then:
would fit the model with the standard choices of instruments
—here with two-step system GMM,
Windmeijer-corrected standard errors,
small-sample adjustments,
and orthogonal deviations.
AR (1)
time-series today = f [(coefficient time series previous day) + (random error today)]
ARMA(1,1) = AR(1) + MA(1)
time-series today = f [(time series previous day) + (coefficient random error previous day) + (random error today)]
time-series today = f [(random error today) (volatility today <= time series previous day)]
Bursty need solution :
GARCH (1,1)
time-series today = f [(random error today) (volatility today <= time series previous day + volatility previous day)]
Sumber:
https://www.youtube.com/watch?v=inoBpq1UEn4